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Abstract. Digital currencies like Bitcoin rely on cryptographic prim-
itives to operate. However, past experience shows that cryptographic
primitives do not last forever: increased computational power and ad-
vanced cryptanalysis cause primitives to break frequently, and motivate
the development of new ones. It is therefore crucial for maintaining trust
in a cryptocurrency to anticipate such breakage.

We present the first systematic analysis of the effect of broken primitives
on Bitcoin. We identify the core cryptographic building blocks and analyze
the ways in which they can break, and the subsequent effect on the main
Bitcoin security guarantees. Our analysis reveals a wide range of possible
effects depending on the primitive and type of breakage, ranging from
minor privacy violations to a complete breakdown of the currency. Our
results lead to several observations on, and suggestions for, the Bitcoin
migration plans in case of broken or weakened cryptographic primitives.

1 Introduction

Cryptocurrencies such as Bitcoin rely on cryptographic primitives for their
guarantees and correct operation. Such primitives typically get weakened over
time, due to progress in cryptanalysis and advances in the computational power
of the attackers. It is therefore prudent to expect that, in time, the cryptographic
primitives used by Bitcoin will be partially, if not completely, broken.

In anticipation of such breakage, the Bitcoin community has created a wiki
page that contains draft contingency plans [46]. However, such plans are hand-
wavy and incomplete at best: no adequate transition mechanism has been built
into Bitcoin, and no plans for partial breakage (or weakening of a primitive)
have been considered. Primitives rarely break abruptly, but instead they break
gradually. With hash functions, for example, it is common that first a single
collision is found. This is then later generalized to multiple collisions, and only later
do arbitrary collisions become feasible to compute. In parallel, the complexity of
attacks (such as collisions) decreases to less-than-brute-force, and computational
power increases. Finally, quantum computing will make some attacks easier,
e.g., by Grover’s pre-image attack [20], or Shor’s algorithm for discrete log
computation [40].

Hence, even if such attacks are years away from being practical, it is crucial
to anticipate the impact of broken primitives, so that appropriate contingency
plans can be put in place. Our work contributes towards filling this gap.
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Fig. 1. The blockchain data structure. This forms the basis of the public, append-only
ledger where all transactions are recorded.

Contributions We provide the first systematic analysis of the impact of broken
primitives on Bitcoin. By analyzing the failure of primitive properties, both in
isolation and in combination, we describe precisely the range of consequences
different breaks have, and pinpoint their exact cause. For example, the flexibility of
the coinbase transaction is the reason why mining becomes trivial if an adversary
can easily compute pre-images of SHA256 hashes. In our analysis, we introduce
an oracle model for hash functions that unifies and extends several existing types
of breakage, allowing us to analyze more realistic attacks. Our investigations
raise concerns about the currently specified migration plans for Bitcoin, being
overly conservative in some respects, while inadequate in others. To that end, we
make concrete suggestions regarding future iterations of the cryptocurrency in
response to entirely broken and partially weakened primitives.

Overview We provide background in Section 2 and propose our adversary
model in Section 3. We next analyze the effects of broken primitives: hashing in
Section 4, signature schemes in Section 5, and combinations of primitive breaks
in Section 6. We revisit the current Bitcoin implementation and its contingency
plans in Section 7. We discuss related work in Section 8 and conclude in Section 9.

2 Background

In this section, we give a description of Bitcoin, the popular peer-to-peer (P2P)
cryptocurrency introduced in 2008 by Satoshi Nakamoto [34]. Figure 1 shows a
high-level view of the main component of Bitcoin—the blockchain—which will
guide this section. The blockchain is a public log of all Bitcoin transactions that
have occurred, combined together in components called blocks. Transactions
use a scripting language that determines the owners of coins (Section 2.1),
and it is up to miners to ensure that only valid transactions occur. To ensure
that nobody can change or remove past transactions, miners have to solve a
hard computational puzzle, known as a Proof-of-Work (Section 2.2). The final
component of Bitcoin is its underlying P2P network which enables distributed
communication (Section 2.3). We do not consider components outside the main
protocol, such as wallets.

2.1 Transactions and Scripts

Bitcoin is an electronic cash system [34], so transactions to transfer coins between
users are central to its structure. A transaction is a list of inputs—unspent
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transactions in the blockchain—and a list of outputs—addresses to which to
transfer the coins, whose unit is a “satoshi”, equal to 10~ Bitcoins or BTCs.
To ensure that only the owner can spend his coins, each input and output is
accompanied by a script. For outputs, this “locking” script contains the conditions
under which the output can be redeemed (scriptPubKey), while for inputs, an
“unlocking” script contains a cryptographic signature (scriptSig) as proof that
these conditions have been met. These scripts are sequences of instructions that
get executed by special nodes called miners. To prevent Denial-of-Service (DoS)
attacks exploiting computationally intensive instructions, most nodes only accept
the five standard scripts:

1. Public-Key The unlocking script must sign the transaction under this key.
2. Pay-to-Public-Key-Hash (P2PKH) The unlocking script must provide a public
key which hashes to the given value, and must then sign the transaction.

3. Multi-Signature An M-of-N (N < 15) multi-signature scheme provides N

public keys, and requires M signatures in the unlocking script.

4. Pay-to-Script Hash (P2SH) This script is the hash of a non-P2SH standard
transaction. The unlocking script provides the full script hashing to this value
and any necessary signatures. This script is typically used to shorten the
length of multi-signature transactions.

5. Data Output (OP-RETURN) The output cannot be redeemed, but can be
used to store up to 40 arbitrary bytes, such as human-readable messages.

For a transaction to be valid, it must contain all the required fields, all
signatures must be correct, and the scripts must be standard. This is a task
that miners undertake for a small fee. Though some non-standard scripts can be
accepted by some miners for a higher fee, we do not cover these in our analysis.

2.2 Mining and Consensus

To ensure that no coin is used more than once, every transaction is made
public through a global, append-only ledger called the blockchain, consisting
of blocks combining transactions in a Merkle Tree [33]. New blocks become a
part of the blockchain through a process called mining: miners need to find a
value (nonce) such that the hash of a block’s header is less than a given target
h(hdr||nonce) < T. The idea behind this proof-of-work (PoW) scheme is that the
probability of creating the next block is proportional to the miner’s computational
power, and because miners receive transaction fees, they are incentivized to do
the work, which includes validating transactions and blocks. A summary is shown
in Figure 2, with the full procedure at [45].

Due to the probabilistic nature of mining, the presence of adversaries, and
networking delays, miners may disagree on the current state of the blockchain.
This is known as a fork. To deal with this issue, there are hard-coded blocks
included in the clients, known as checkpoints, starting from the first block, called
the genesis block. In addition, honest (non-adversarial) miners work on the longest
blockchain they become aware of, when other nodes announce new blocks and
transactions. This way, nodes eventually reach consensus [10,17].



4 Ilias Giechaskiel, Cas Cremers, and Kasper B. Rasmussen

input : Bitcoin block
output:valid or invalid

/* Verify block header x/
Verify Hash(block header) < target
Verify Merkle hash
Verify Hash(prev block) = prev_hash
/* Verify each transaction input in block */
foreach transaction input in the block do
Check that referenced output transaction exists and hasn’t already been spent
Verify signatures
end

Fig. 2. Procedure to verify a block’s cryptographic primitives.

These temporary forks enable double spending: an adversary can have different
transactions in different branches of the fork using the same inputs but different
outputs. However, because the probability of “deep” forks where branches differ
in the top N blocks drops exponentially in N, receivers usually wait for multiple
confirmation blocks. If a miner or a group of collaborating miners (called a
pool) is in control of a high enough proportion of the total computational power
(51% [29], or even less [16]), then they can possibly destabilize the system.

2.3 Network

The last key component is the Peer-to-Peer (P2P) network for distributed opera-
tion. Transactions and blocks are broadcast by nodes to their peers, and then
relayed further to flood the network if they meet the relay policies (to prevent
DoS attacks). Not every node is a miner or necessarily has access to the full chain:
“lightweight” clients that use Simple Payment Verification (SPV) only download
headers and the relevant transactions (with the corresponding Merkle Trees).

Over time, the need for extensions or bugfixing motivates protocol changes.
Since not all nodes upgrade at the same time, this may introduce forks. If
the validation rules in the upgrade become stricter, then the protocol remains
backwards-compatible, resulting in a softfork. A hardfork, on the other hand, is
not backwards-compatible, and thus requires the entire network to upgrade, as
old software would reject new transactions and blocks as invalid.

3 System and Adversary Model

In this section we describe our Bitcoin model and discuss the adversary’s goals
and powers in the presence of broken cryptographic primitives. We distinguish
between 4 entities: senders, receivers, miners, and networking nodes. Senders
and receivers, collectively referred to as users, wish to exchange Bitcoins via
transactions. They care about the amount of money under their control, but not
about the details of the underlying system.

Transactions are transmitted via the underlying P2P network. Miners have
their own (possibly different) copy of the blockchain, and have different hashing
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capacities. For our model, we consider pools as single miners with a large hashing
capability. We distinguish between two adversary roles: user and miner. As a
user, the adversary aims to make money, either by successfully double spending
or by spending from another user’s wallet. As a miner, the adversary controls
a proportion o < 0.5 of the mining power. We assume the adversary controls a
proportion g of the nodes in the P2P network, so that he can attempt to split
the network temporarily in the presence of a suitable vulnerability, but cannot
be confident that such attempt will succeed.

We consider the economic aspects of Bitcoin out of scope, and we also do not
consider developers as a threat. Finally, we do not investigate adversarial attacks
of an individual miner against his own pool, thus allowing us to consider pools
as single entities of more mining power.

4 Broken Hashing Primitives

In this section we look at the cryptographic hash functions in Bitcoin, and analyze
the effect of a break in one of the properties of first and second pre-image and
collision resistance. We generalize these into a single property called chosen-format
bounded pre-image resistance.

4.1 Hashing in Bitcoin

In the original Bitcoin paper [34], the concrete primitives used are not specified:
there were no “addresses” but just public keys, and the hash used for mining
and the Merkle tree was just referred to as a hash function. The current Bitcoin
implementation, going back to at least version 0.1.0 [35] uses two hash functions.
Main Hash This hash function has an output of 256 bits and requires applying
SHA256 twice: Hy(z) = SHA256 (SHA256 (z)). It is the hash used for mining
(Proof-of-Work): miners need to find a nonce such that the double SHA256 hash
of a block header is less than a “target” hash. It is also used to hash transactions
within a block into a Merkle Tree, a structure which summarizes the transactions
present within a block. Finally, it is the hash used for transactions signed with a
user’s private key (see [39] for details).

Address Hash The second hash function is used as part of the Pay-to-Public-
Key-Hash (P2PKH) and the Pay-to-Script-Hash (P2SH) scripts. Its output is 160
bits, and it is concretely instantiated as H4(z) = RIPEMD160 (SHA256 (x)).

4.2 Modeling Hash Breakage

In this section we analyze how hashes break in terms of their building blocks,
and introduce our oracle model for their breakage.

Identifying Hashing Building Blocks A good cryptographic hash function
h(z) should offer three properties:

1. Pre-image resistance Given y it is hard to find z with h(x) = y.

2. Second pre-image resistance Given xp, it is hard to find xo # z; with
h(.]?l) = h(.]?g)

3. Collision resistance It is hard to find distinct x1 # x2 such that h(z1) = h(z2).
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Breakage Address Hash (Ha) Main Hash (Hy)

Collision Repudiate payment  Steal and destroy coins

Second pre-image Repudiate payment  Double spend and steal coins

Pre-image Uncover address Complete failure of the blockchain (2n calls)
Bounded pre-image All of the above Complete failure of the blockchain (n calls)

Table 1. Summary of the effects on Bitcoin for different types of hash breakage.

where “hard” refers to computational infeasibility, since hash functions have a
fixed-length output, so collisions always exist.

We consider attacks against H4 and Hj; abstractly, so that our arguments
can be extended for any future version that uses the same structure. Currently,
H 4 and H); are built using RIPEMD160 and SHA256. To relate the attacks we
discover back to the concrete primitives in Section 7, we show in Appendix A
that for collisions and second pre-images, only one of the two nested hashes needs
to be broken, while for pre-images both need to be broken.

Modeling Hash Breakage Variants  The three properties discussed above
do not accurately capture all types of breakages, which typically exploit the
internal structure of the hash function. Thus, an adversary might have more
control over the structure of the pre-image or the target value. For example,
mining expects the hash to be smaller than a given target, a property which
cannot be expressed using traditional pre-image oracles, as we show in Section 4.3.

For this reason, we introduce a more general oracle model to enable our
analysis. We call the oracle a chosen-format bounded pre-image oracle P, which
on input (a, b, y;, yn, ) returns an x; such that y; < h(a||z;||b) < yp, or L if none
exists. Thus, the oracle returns a value X; = al|x;||b such that its beginning and
end are caller-supplied, and its hash is within a given target range. Moreover, the
oracle is deterministic such that the same z; is returned each time and z; # x;
for i # j and if given an optional parameter s, the returned z; has size s bits.
That is to say, the oracle can be called multiple times to get different pre-images,
and the user is also able to specify the length of the pre-image in bits.

In Appendix B, we motivate these parameters and show that our oracle
captures breakages in the three properties. We summarize our results in Table 1.

4.3 Main Hash

In this section we analyze the main hash Hj;, which is used for mining, in Merkle
Trees, and with signatures. We discuss all three use-cases separately.

4.3.1 Mining

Pre-Image against Fixed Merkle Root We analyze the probability that
an adversary with access to a pre-image oracle can break mining. Miners search
for block headers whose n-bit hash is below a target, which we assume starts with
d zeros. Since the target can be higher by at most a factor of 2, the assumption
introduces up to 1 bit of extra work.
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If the adversary controls b < n bits of the input, there are 2° possible inputs
to the hash function. These need to map to one of the 2"~ values in the range
[0,091"=9), and will be uniformly distributed across 2" values. This gives the
expected number of b-bit pre-images as FE[# pre-images] = 2 - (27~%)/(2") =
20— The adversary can only query the pre-image oracle for specific target
hashes. Because there are 2% b-bit pre-images, distributed across the 27~¢
values, the probability that a given hash in [0,091"~9) has a b-bit pre-image is:
P[correct pre-image] = (2°=%)/(2"~%) = 2b=". This probability does not depend
on d, as one might expect. This is because by increasing d to reduce the number of
valid hashes, the adversary also reduces the expected number of b-bit pre-images.
Assuming the adversary is allowed 2% queries to the oracle, the probability of
breaking mining becomes P[success] = 2¢ - 2b—n = 2a+b—n,

To calculate b, we explore all fields in the block header. The version number
(nVersion), as well as the hashes of the previous block header (hashPrevBlock),
and of the current Merkle root hash (hashMerkleRoot) are fixed. However, the
adversary has partial control over the remaining fields in the header. For the
timestamp field (nTime), the value can be within 7200 seconds of the current
median/average, giving the adversary approximately 13 bits of freedom. Moreover,
the adversary has complete control over the 32 bits of the nonce (nNonce). The
nBits field 0t AABBCCDD describes the target difficulty as 0OxBBCCDD -
2569244=3 with the protocol only checking that the produced number is at most
the target value given by the consensus. At the time of writing, the target value
is 02180928 f0, granting the adversary 28 bits of freedom.

Together the fields give b = 73. With n = 256, and allowing 289 calls to the
oracle, the probability of success is only 280+73-256 — 9-103 which is negligible.
Pre-Image against Variable Merkle Root An adversary may attempt to
reorder or exclude transactions to try different roots, but by the same argument
the success probability is negligible. However, the adversary can work backwards,
by querying the oracle for a target Merkle hash and repeatedly querying the
oracle to reconstruct the entire Merkle tree. This would normally fail, as the
transactions generated would not be valid, for instance due to incorrect signatures,
but Bitcoin does not enforce a minimum number of transactions in a block. Hence,
miners can mine blocks with just the coinbase transaction which generates new
coins, and which has a variable-length input of up to 100 bytes that is controlled
by miners [39]. A malicious miner with access to the pre-image oracle can then:

1. Pick an arbitrary target T and get a pre-image for Hy;(al|z||b) = T where
the desired x is the hashMerkleRoot field, and a,b are the remaining fields
in a block header. Because the root is 256 bits, there is a pre-image with
high-probability, but if not, repeat with some other random target 7".

2. Pick alength [ for the script, and fix all other fields for the coinbase transaction.
Solve Hp(d'||y]|b') = « where o', b’ are the remaining fields for the coinbase
transaction. Because the number of free bytes is up to 100, there is an [-bit
pre-image y with high probability. The miner then generates a coinbase
transaction using a’,y, b’ and combines it into a block using a, b. This block
will have a hash of T as desired.
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Bounded Pre-Image An adversary with access to our chosen-format, bounded
pre-image oracle P can simply call P on (hdr, 1,0,y;,0,s), where y; is the target
hash, hdr is the beginning of the block header, and s = 32 is the size of the
required nonce such that 0 < Hps(hdr||nonce) < y;. This completely breaks
mining and requires half as many calls to the oracle compared to the above attack
using the simple pre-image oracle.

Collisions, Second Pre-Images Collisions and second pre-images are only
useful for mining if the pre-images start with d zeros. Assuming the pre-images
contain valid transactions and signatures, a miner can fork the chain, but this
only occurs with negligible probability.

4.3.2 Merkle Trees

Altering existing blocks A similar argument as for mining shows that an
adversary cannot find a valid second pre-image of an entire block except with
negligible probability. Pre-images do not give the adversary new information, as
they already accompany the hash value. Collisions are also not useful, as both
values are attacker-controlled and cannot alter existing blocks.

Attacking new blocks For new blocks and transactions, an adversary with
sufficient network control can use a collision or second pre-image to split the
network, reject both blocks or reverse transactions, thus enabling double-spending.
This can occur even with invalid pre-images: a similar situation occurred when
some miners generated invalid blocks which were not detected by clients [1].
Pre-images are again not useful, as they always accompany the hashed value.

4.3.3 Main Hash Usage in Signatures

In Bitcoin, signatures are over messages hashed with Hj;. Therefore, a second
pre-image attack or a collision on Hj; can be used to destroy and possibly steal
coins: an adversary can ask for a signature on an innocuous transaction (e.g.,
pay 1 satoshi to address X), but transmit a malicious one instead (e.g., pay 100
BTC to address Y') since there are enough bytes that the adversary controls to
guarantee success with high probability.

Though external to the protocol, signatures of Hy; are also used by Bitcoin
developers to transmit alerts. A pre-image attack again does not give useful
information to the adversary, as the pre-image always accompanies the signature.
Collisions are also not useful, as the adversary cannot sign them. However, a
second pre-image allows the adversary to reuse an old signature on a new alert.

4.4 Address Hash

The address hash is used in two contexts. First, in Bitcoin addresses, using
Pay-to-Public-Key-Hash (P2PKH) scripts: an address is essentially y = Ha(p) =
RIPEMD160 (SHA256 (p)) where p is the public key (together with a check-
sum [4]). Payments to addresses only use the hashed value y, but transactions
to addresses require the full public key p and the signature on the transaction.
The second use is in Pay-to-Script-Hash (P2SH) scripts. A P2SH is y = H4(s)
where s is a standard script, typically a multi-signature transaction. Payments
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Breakage Effect

Selective forgery Steal coins from public key
Integrity break Claim payment not received
Repudiation -

Table 2. Effects of a broken signature scheme.

to a P2SH script do not reveal the pre-image, but transactions spending the
coins require it and the signatures of the corresponding parties. We discuss them
jointly, since the only difference between a P2PKH and a P2SH in this context is
the number of required signatures.

Pre-image For previously spent outputs, or for reused addresses, H 4 is already
accompanied by its pre-image. A pre-image thus can only reveal the public key(s)
for unspent outputs. This has minimal privacy consequences since public keys
are not tied to real identities, but it could enable an offline attack on the key.
Assuming that the key was not chosen with bad randomness and there is no
weakness in the signature scheme, the probability of success is still negligible.
Second pre-image A second pre-image gives the adversary access to a different
public key or script with the same hash. However, because the adversary does
not control the corresponding private key, he cannot use this to change existing
transactions or create new ones. This is because pre-images (whether a key or a
script) are only revealed and verified when spent in transactions.

Collision Collisions are similar, though in this case both public keys are under
the adversary’s control, and again the adversary does not have access to the
private keys. In both scenarios, there is a question of non-repudiation external
to the protocol itself: by presenting a second pre-image of a key used to sign a
transaction, a user/adversary can claim that his coins were stolen.

5 Broken Signature Primitives

In this section we describe the use of digital signatures in Bitcoin, and analyze
how a break in their unforgeability, integrity, or non-repudiation impacts Bitcoin.
We summarize our results in Table 2.

5.1 Digital Signatures in Bitcoin

Bitcoin’s digital signature scheme is the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) with the secp256k1 [43] parameters, and is used to sign the
main hash Hj; of transactions. These signatures can be over different parts
of the message based on the hashtype [39], leading to transaction malleability
attacks [13], as the same transaction can be encoded multiple ways without inval-
idating the signature. The signature scheme is also used for alerts by developers
to announce critical information. The signature is over the main hash Hj; of the
entire alert structure. The effects on alerts are not summarized in the table as
they are external to the protocol.
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5.2 Modeling Signature Breakage Variants

The security of digital signature schemes is usually discussed in terms of three
properties, which we define as follows:

1. Unforgeability No-one can sign a message m that validates against a public
key p without access to the secret key s.

2. Integrity A valid signature {m}; does not validate against any m’ # m.

3. Non-repudiation A valid signature {m}, does not validate against any public

key p’ # p.

where there is an implicit “except with negligible probability”, due to hashing.

These properties are linked and a breakage in one usually implies a breakage
in the others. In addition, they are often discussed in a much more abstract way:
non-repudiation refers to the property that the signature proves to all parties
the origin of the signature, but in this case we introduce it in a way that is more
akin to Duplicate Signature Key Selection (DSKS) attacks [9].

5.3 Broken Signature Scheme Effects

We now analyze a break in each of these properties separately, starting with the
last two, as neither of them can lead to an attack on their own.

Integrity In order for a break in the integrity of the signature scheme to be
useful in Bitcoin, a signature of Hjs(m) must also be valid for Hps(m'). This
involves H); in a non-trivial way, so we discuss this further in Section 6, but
note that transaction malleability can cause the issuer of a transaction to think
that his payment was not confirmed [13].

Non-repudiation For non-repudiation, we note that for transactions, even if
a signature verifies under a different key, the address hashes of the two public
keys must match. A break thus involves H 4, so we discuss this case further in
Section 6. For the alert mechanism, however, if given a message m and a public
key p, one can find p’ (with its secret key s’) such that {m} validates against
p, then an adversary can send fake alert messages. This can have an external
impact on Bitcoin, for instance by asking users to manually shut down clients.
Unforgeability When it comes to unforgeability, we can distinguish between
various types of breaks [19]: Total break to recover the private key, universal
forgery to forge signatures for all messages, selective forgery to forge signature
on a message of the adversary’s choice, and existential forgery to produce a valid
signature that is not already known to the adversary.

Because the message to be signed must be the hash of a valid transaction,
an existential forgery is not sufficient since the probability that it corresponds
to a valid message is negligible. Selective forgery on the other hand can be used
to drain a victim’s wallets. From this perspective, selective forgery and a total
break have the same effect. However, as we discuss later, the type of breakage
influences how to upgrade to a new system. It is worth noting that an adversary
does not necessarily have access to a user’s public key, since addresses that have
not been reused are protected by the address hash H 4.
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Signature Property

Hash Property Selective forgery Integrity break Repudiation

Address Hash (Ha)
Collision Repudiate transaction - Change existing payment’
Second pre-image  Steal all coins - Change existing payment
Pre-image Steal all coins - -
Bounded pre-image All of the above - Change existing payment

Main Hash (Hys)

Collision Steal coins Steal coins' -
Second pre-image  Steal coins Double spend’ -
Pre-image - - -
Bounded pre-image Steal coins All of the above -

t Achieving this requires a slight modification of the definitions. See text for details.

Table 3. The effects of a multi-breakage: combining broken hashes and signatures.

6 Multi-Breakage

In this section we analyze how combinations of breakages in different primitives
can impact Bitcoin. Because H4 and Hj; are not used together, we only consider
a break in the signature algorithm in combination with a break in one of the two
hashes. Since the extra power of our oracle is not needed, we discuss breakage in
terms of the three traditional properties. The results are summarized in Table 3.

6.1 Address Hash and Signature Scheme

Signature Forgery Combining a selective forgery with a first or second
pre-image break of the address hash can be used to steal all coins that are
unspent. Generating two public keys p, p’ with Ha(p) = Ha(p') (collision) whose
signatures the adversary can forge does not have a direct impact, since the
adversary controls both addresses. However, it appears as if two different users
are attempting to use the same coin, thus raising a question of repudiation, which
we discuss in Section 7.
Signature Integrity As the messages signed for alerts or transactions do not
involve H 4, this combination does not increase the adversary’s power.
Signature Repudiation A pre-image attack on H 4 is not useful as the public
key is already known. For a second pre-image, assume that given a message m
(the hash of a transaction) and a public key p, an oracle returns p’ such that
Ha(p) = Ha(p') and the signature of m under p also validates against p’. Since
the same signature validates for both keys, an adversary can replace p by p’ in the
unlocking script. Though this does not give the adversary immediate monetary
gain, a transaction in the blockchain has been partially replaced.

For collisions, assume that given a message m, an oracle returns two public
keys p,p’ such that H,(p) = Ha(p') and the signature of m under p validates
under p’. If the adversary does not have access to the private keys, he cannot
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sign the transaction. Otherwise, the effect is identical to the second pre-image
case, where the adversary can replace part of a transaction in the blockchain.

6.2 Main Hash and Signature Scheme

Signature Forgery As explained in Section 4.3, none of the potential attacks
using the hash Hj; required a break in the signature scheme. The partial excep-
tions were mining under a pre-image break, alerts with collisions, and transactions
with second pre-image or collision breaks. We discuss each possibility below.

For mining, a pre-image attack is useful when working backwards from a

fixed target to get a pre-image for the Merkle root, and turn it into a tree
of transactions. The problem identified in Section 4.3 was that there is only
negligible probability that the transactions refer to valid, unspent outputs, so a
forgery does not solve this issue. For alerts, collisions require forgery. Though
the effect of signing and transmitting two different alert messages with the same
hash is unclear, it could potentially be used to cause external effects to Bitcoin
by making the different messages ask the users to take different actions. Finally,
for transactions, collisions and second pre-images on their own can be used to
destroy coins, or steal coins. If the adversary can also forge signatures, he is
guaranteed to be able to steal coins no matter what address they went to, as
long as it is not protected by the address hash.
Signature Integrity A collision or a second pre-image attack trivially breaks
the integrity of the scheme as messages are always hashed, and reduces to the
case discussed in Section 4.3, so we modify the definitions slightly to consider a
joint break in the two algorithms.

A collision integrity oracle given a public key p produces m,m’ such that
the signature of Hys(m) is also valid for Hps(m’). The adversary can ask for a
signature on an innocent transaction, but transmit the malicious one with the still
valid signature. Unlike in the regular collision case, the two hashes Hys(m) and
Hys(m’) are different. Hence, the adversary cannot just replace the transaction
in the block, but he can opt never to transmit the innocent one instead.

A second pre-image integrity oracle given a public key p and a message m
produces m’ such that the signature of Hys(m) is also valid for Hps(m'). This
case also resembles the break on just Hjs, but, again, because the hashes are not
equal, the adversary cannot simply replace an existing transaction, unless it has
not yet been confirmed in a block. This can split the network and destroy coins.
Signature Repudiation The non-repudiation property of the signature
scheme necessarily involves a break of H4, as was explained in Section 5.3.
This combination therefore does not increase the adversary’s power.

7 Current Bitcoin Implementation

In this section, we revisit the current Bitcoin implementation, its choice of
primitives and contingency plans, using observations from the previous sections.
7.1 Current Cryptographic Primitives

In the current version of Bitcoin, H4(xz) = RIPEMD160 (SHA256 (z))), and
Hys(x) = SHA256 (SHA256 (x)). Because there are no critical breaks for H4, a
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Breakage Effect
SHAZ256
Collisions Steal and destroy coins

Second pre-image Double spend and steal coins
Pre-image Complete failure
Bounded pre-image All of the above

RIPEMD160
Any of the above Repudiate payments
ECDSA
Selective forgery  Steal coins
Integrity break Claim payment not received
Repudiation -

Table 4. Effects of concrete primitive breakage on the current version of Bitcoin.

break in RIPEMD160 is not cause for concern. Moreover, because Hj; only uses
SHA256, an attack against SHA256 is equivalent to an attack against Hp;. We
can thus summarize the effect of concrete primitive breakage in Table 4.

7.2 Existing Contingency Plans

A break of the primitives has interested the community from the early days of
Bitcoin. Informal recommendations by Satoshi in forums [36,37] evolved into a
“wiki” page which describes contingency plans for “catastrophic failure[s]” [46].
Such a failure for primitives is defined in terms of an adversary that can defeat
the algorithm with “a few days of work” [46], and the focus is on notifying users
(since alerts may be compromised), and protecting the 0P_CHECKSIG operation
to prevent people from stealing coins.

Concretely, for a “severe, O0-day failure of SHA-256" [46], the plans propose
switching to a new hashing algorithm H’, and hard-coding known public keys
with unspent outputs as well as the Merkle root of the blockchain under H’. For
a broken signature scheme, if the attacker cannot recover the private key, and
there is a drop-in replacement using the same key-pair, the plan is to simply
switch over to the new algorithm. Otherwise, the new version of Bitcoin “should
automatically send old transactions somewhere else using the new algorithm” [46].

7.3 Potential Migration Pitfalls

The contingency plans suggest that “code for all of this should be prepared” [46],
but no such mechanism currently exists. Moreover, no plans are in place for
a break in RIPEMD160. Since sudden breaks are unlikely, neither is cause for
immediate concern, but should be included in future plans.

Broken SHA256 By our analysis, it is clear that new transactions should not
use a broken hash. However, existing historical transactions and blocks cannot
be altered, except in a majority mining attack. Thus, hard-coding public keys,
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and rehashing the entire blockchain are more prudent than necessary. It should
be noted that a sudden migration necessitates a hardfork for Bitcoin.

Broken ECDSA For a broken ECDSA, a transition is indeed easy if there is
a drop-in replacement and the private key is safe. Otherwise, a gradual transition
scheme is necessary as users will need to manually switch over to a new key pair.

7.4 Recommendations

In this section we make recommendations to more properly anticipate primitive
breakage. Recognizing that there are financial considerations in addition to the
technical ones, we do not propose a full upgrade mechanism, but merely make
suggestions to the Bitcoin developers and community.

First of all, our analysis reinforces the idea that users should not reuse
addresses, not just for privacy reasons, but also because they protect against
some types of primitive breakage. For instance, if the signature scheme is broken,
addresses are still protected by the hash.

The plans for a sudden breakage should address when to freeze the blockchain,
and whether to roll back transactions in the case of a sudden break. Moreover,
the centralized approach of hard-coding well-known keys is perhaps not entirely
in line with Bitcoin’s decentralized philosophy and can lead to lost coins. If keys
are to be hard-coded, there is a trade-off between complexity and risking making
coins unspendable: developers must decide whether the migration would occur at
once, or whether periodic alert-like messages would be used to distribute new
key pairs periodically. An alternative and perhaps better approach would be to
use Zero-Knowledge Proofs to tie the old address still protected by their hash to
the new public key.

Given that sudden breaks are unlikely, there is a need for a separate plan for
weakened primitives. Based on our analysis, we recommend the following:

— Introduce a minimum number of transactions per block to increase the
difficulty of performing the pre-image attack against the mining header target
(Proof-of-Work or PoW) using the coinbase transaction.

— To migrate from old addresses, whether due to a weakened hash or signature
scheme, introduce new address types using stronger hashing and signature
schemes. This can be achieved with a softfork by making transactions appear
to old clients as “pay-to-anybody”, akin to how P2SH was introduced.

— Instead of using nested hashes for H 4, Hj;, combine primitives in a way that
increases defense-in-depth (see Section 8).

— Given that Hj; has multiple use-cases, consider whether each of its functions
should have a different instantiation, whether through distinct primitives, by
pre-pending different values, or by using an HMAC with different keys.

— Since alerts are external to the Bitcoin mechanism itself, send alerts using a
new signature and hash scheme to new clients, and duplicate the message
using old primitives for old clients.

— Consider a hardfork in response to a weakened Hj;, with re-designed headers
and transactions, and without any use of the old primitives.
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A softfork is insufficient for properly upgrading a weakened hash function
Hy; = H; to the stronger Hy, because Hjs forms the core of the PoW scheme.
Specifically, since any changes must be backwards compatible, the old validation
rules must still apply, so for every new block, H; (hdr) < T, where the target T
is still calculated by the same algorithm. New blocks would also need to satisfy
some additional constraint Hy(hdr’) < T’, where the target T” is calculated
independently and hdr’ is the block header, possibly excluding some fields. As a
result, new clients would have to solve two PoW computational puzzles. Though
every instance of H; (transaction, Merkle root, etc.) could be accompanied by
an instance of Hs, fundamentally blocks and transactions are identified by their
H; hash, which an attacker could exploit. There are also questions of incentives,
and whether new iterations of Bitcoin would still use a PoW scheme, but this is
left as future work.

8 Related Work

Since no other systematic analysis exists regarding primitive breakage for Bitcoin,
we consider papers which have focused on Bitcoin security in general, and also
explore related work focusing on the security of the primitives themselves.
Bitcoin Multiple papers have identified or formalized properties such as stability
and anonymity in Bitcoin and other cryptocurrencies [10,17,44]. Anonymity and
privacy issues have also been explored extensively [3,8,41,42].

Research on adversarial miners has shown that there are infinitely many Nash
equilibria for mining strategies [29], and some strategies allow miners controlling
a < 50% of the power to gain disproportionate rewards [12,15,16]. Other research
has demonstrated that double spending attacks are practical against Bitcoin
fast payment scenarios [24,25], with some further focus on causing a network
split [18] or isolating victims from other peers in the P2P nework [21].

[5] focuses on the economics of Bitcoin, including the effect of a history
revision, which is discussed in the contingency plans [46]. [13] investigated
transaction malleability attacks which were prevalent in 2014.

Cryptographic Primitives For combining hashes, [23] shows simultaneous
collisions for multiple hash functions are not much harder to find than individual
ones. [22] shows that even when the underlying compression functions behave
randomly but collisions are easy to generate, finding collisions in the concatenated
hash hy (z)||he(x) and the XOR hash hy () ©hso () requires 2""/2 queries. However,
when the hash functions use the Merkle-Damgard (MD) construction, there is a
generic pre-image attack against the XOR hash with complexity O (25”/ 6) [30].

Neither MD hashes [11] nor h (h(z)) [14] behave as random oracles. MD
hash functions also behave poorly against pre-image attacks, allowing one to find
second pre-images of length 260 for RIPEMD160 in 219 < 2169 time [27]. If an
adversary can further find many collisions on an MD construction, he can also
find pre-images that start with a given prefix (Chosen Target Forced Prefix) [26].
This notion can be extended to Chosen Target Forced Midfix attacks and it was
proven that at least 227/3 / L'/3 queries to the compression function are needed
where L is the maximum length of the pre-image [2] .
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Attacks against RIPEMD160 pre-images [38] and collisions [32] as well as
SHA256 collisions [31] and pre-images [28] only work for a reduced number of
rounds, and typically only incrementally improve upon brute-force solutions.
Certain ECDSA parameters can lead to Duplicate Signature Key Selection,
where an adversary can create a different key P’ that validates against a correct
signature under a key P [9]. Implementations of ECDSA can also be vulnerable to
side-channel attacks [47], an attack which has also been practically demonstrated
against Bitcoin [6]. Finally, [7] showed how hash collisions break the security of
protocols like TLS, IPSec, and SSH.

9 Conclusions

We presented the first systematic analysis of the effect of broken primitives on
Bitcoin. Our analysis reveals that some breakages cause serious problems, whereas
others are inconsequential. The main vectors of attack involve collisions on the
double SHA256 hash or attacking the signature scheme, which directly enable
coin stealing. In contrast, a break of the hash used in addresses has minimal
impact, since they do not meaningfully protect the privacy of a user. Our analysis
has also uncovered more subtle attacks. For example, the existence of another
public key with the same hash as an address in the blockchain enables parties to
claim that they did not make a payment. Such attacks show that an attack on a
cryptographic primitive can have social rather than technical implications. We
leave the economic impact of such attacks as future work. Because our analysis
abstracts away from the concrete primitives, our general results extend to future
versions that use a similar structure.

We uncovered a worrying lack of defense-in-depth in Bitcoin. In most cases,
the failure of a single property in one cryptographic primitive is as bad as multiple
failures in several primitives at once. For future versions of Bitcoin, we recommend
including various redundancies such as properly combined hash functions, and
requiring a minimum number of transactions per block. Bitcoin’s migration plans
are currently under-specified, and offer at best an incomplete solution if primitives
get broken. We offer some initial guidelines for making the cryptocurrency more
robust, both for a sudden break, but also in response to weakened primitives.
However, future discussions should directly involve the Bitcoin developers and
community to propose plans that would be in line with their expectations.
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A Breaking Nested Functions

In this section, we investigate the three main hashing properties, for a function
h = hq o hy which is a composition of two hash functions. We show that for
collisions and second pre-images, only one of the two nested hashes needs to be
broken, while for pre-images both need to be broken.

Pre-image resistance h is broken only when both h;, and hy are broken. In
one direction, assume that we have a pre-image algorithm for h, that returns x
on input y. Then, to find a pre-image for y under hs, run the algorithm on h; (y)
for output x. If ho(z) =y, then z is a pre-image for y under hs. Else ho(z) # y
and (ha(z),y) forms a collision (or second pre-image) for hy. Conversely, if there
is an algorithm for both h; and ho pre-images, then to get a pre-image of y under
h, one finds a pre-image z; of y under hy, and then a pre-image xo of x1 under
ho. x5 is then a pre-image of y under h.

Second pre-image resistance h is only as strong as the inner function
ho. In one direction, assume that given x; one can find zo # x; such that
ha(x1) = ha(x2). Then clearly h(z1) = h(z2).! In the other direction, assuming
that given z7, one can find xo # x; such that h(x;) = h(xsz), then either
ha(x1) = ha(z2) for a second pre-image attack on hg or ho(x1) # ho(xs) for a
collision (and second pre-image of ha(x1)) on hy.

Collision resistance h is again only as strong as hy. A collision (z1,x2) for
ho is clearly a collision for h, and a collision (x1,z2) for h is either a collision for
he or (ha(z1), ha(z2)) is a collision for hy.

B Generalizing Hash Oracles

In this section, we first motivate the parameters in our oracle model and then
show that our oracle generalizes traditional primitive breakage. We remind
the reader that our oracle P on input (a,b,y;,yn,?) returns an z; such that
y1 < h(al|z;||b) < yn or L if none exists, with z; # x; when i # j.

First of all, specifying a, b, and the length of the input forces pre-images and
collisions to follow the format of transactions and block headers. Using bounds on
the target range is necessary to describe some attacks against the proof-of-work
(PoW) scheme. In addition, the oracle needs an index parameter to ensure that
the adversary is polynomially bounded: when there is no length restriction on the
pre-image, there are potentially infinitely many pre-images, and exponentially
many for a fixed-length input. Finally, z; # x; for ¢ # j so that the adversary can

I The same can be said if hy is vulnerable to second pre-image attacks and hg is
vulnerable to first pre-image attacks.
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access as many distinct pre-images as desired. These returned values are distinct,
without gaps, i.e., if the oracle returns L on ¢ it should also return 1 on i + 1,
so that the adversary can stop querying the oracle after receiving a L. We now
show how an adversary with access to P can break the three hash properties.
Pre-image Getting a pre-image of y amounts to calling P on (L, L,y,y,0),
so the adversary can break pre-image resistance with a single call to the oracle.
Second pre-image Getting a second pre-image given x is almost identical,
but potentially requires two oracle calls: call P on (L, L, h(x),h(x),0), and if
that returns z, call P on (L, L, h(x),h(x),1).
Collision Getting a collision is not as straightforward. Let h : {0,1}* — {0,1}"
be the hash function in question. First of all, it is not always the case that every
y € {0,1}" has a pre-image (let alone two), even though probabilistically this
holds true for a well-designed hash function. For instance, consider h’, where
R (x) =1 when h(z) =0, and h'(z) = h(x) otherwise. Then, b’ is strong if & is
strong, but does not hit 0. However, by exploiting the pigeonhole principle and
binary search, one can make lg(n) calls to the oracle to generate a collision.
The ideais to call P on (L, L, y;, yn, yn — y1 + 2). If the oracle returns anything
but L, there are more pre-images than possible hashes within the range [y;, y].
Then, one can perform a binary search with initial y; = 0™, y;, = 1™ to determine
a value y that has at least 2 pre-images.
Chosen-prefix collision To get a chosen-prefix collision, i.e. given p find two
values x # 2’ such that h(p||z) = h(p||2’), one performs the same procedure as
for getting a normal collision, but with a = p.
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